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Almtract--A prediction procedure for computing the shock and expansion waves associated with transonic 
and supersonic flow is presented. In order to assess the capability of the model, calculations are carried 
out for a number of benchmark cases, for which analytical solutions or published data are available. The 
cases considered are: supersonic flow over jet vanes; transonic shocked flow in a nozzle; over- and under- 
expanded free jets with Maeh disc formation; and supersonic flow in a cascade of wedges with shock 
reflection and Prandtl-Meyer expansion. The model, which includes the solution of the steady-state Euler 
equations as well as the full Navier-Stokes equations, utilizes some modifications made to an existing 
finite-volume formulation in order to ensure momentum and energy conservation through the shock waves. 

In all the cases, the calculations compare favourably with the analytical and experimental results. 

1. INTRODUCTION 

THE APPLICATION of transonic and supersonic flows is 
found in high technology fields, and the use of numeri- 
cal methods for their simulation has advanced mark- 
edly over the past l0 years. A large number of com- 
putational methods have been proposed for the 
solution of these flows, and an increasing number of  
them concern the solution of  the full compressible 
Navier-Stokes equations [l-12]. Euler methods have 
been applied extensively to the prediction of shock 
waves, and most of them are based on a time-march- 
ing approach, whereby steady-state solutions are 
obtained as the asymptotic limit of  an unsteady flow 
calculation. For  steady flow, there exists the alter- 
native of solving the steady-state equations directly 
by an iterative method. 

The present work considers the validation of a 
steady-state solution algorithm for a series of tran- 
sonic and supersonic test cases, including both bounded 
and unconfined flow. Modifications are made to an 
existing first-order finite-volume formulation in order 
to ensure momentum and energy conservation 

through shock waves; these are particularly impor z 
tant in confined flows where they lead to an accurate 
prediction of  the shock position and strength. The 
smearing effects, which according to the literature are 
a characteristic feature of  shock-capturing methods 
which employ first-order discretizing schemes, are 
greatly reduced and virtually eliminated by using 
an appropriate grid distribution for external flow 
problems. 

Although the full Navier-Stokes equations are 
solved for some of  the cases presented here, the paper 
focuses on inviscid, transonic and supersonic solu- 
tions of  the steady-state Euler equations. The motiv- 
ation is that a reliable calculation of  inviscid flow is a 
prerequisite even if the ultimate objective is to solve 
the Navier-Stokes equations. Furthermore, it allows 
direct comparison between the predictions and exist- 
ing analytical solutions. 

The main objective of  the work is to investigate the 
ability of  the present prediction procedure for com- 
puting the shock and expansion waves associated with 
transonic and supersonic flow fields. The remainder 
of the paper is divided in three sections. Section 2 

1193 



1194 A. PALACiO et al. 

NOMENCLATURE 

At coefficients of the finite-volume x, 
equation 

As central coefficient of the finite-volume Greek symbols 
equations a 

a acoustic velocity & 
c chord e 
CD.f, drag coefficient due to friction 

7 
CD.,h drag coefficient due to shock /z 
CD.,ot total drag coefficient 

P DD diameter of the Mach disc 
O" h 

DN diameter of the jet nozzle 
O'h. t 

h static enthalpy 
I unit tensor 
k turbulent kinetic energy 
L reference length Subscripts 
M local Mach number A 

e M, molecular weight of the gas 
p static pressure i 
Pk stress-production rate of k N 
Qm molecular heat-flux vector P 
Q' turbulent heat-flux vector t 
S® integral source term 0 
T ~ molecular stress tensor 0, i 
T' turbulent stress tensor 
U velocity vector 
x axial distance Other symbols 
Xo axial location of the Mach disc from ® dyadic product 

nozzle : tensor product. 

shock location. 

wedge-profile deflection angle 
wedge-profile thickness ratio 
dissipation rate of the kinetic energy 
specific heat ratio 
fluid dynamic viscosity 
fluid density 
molecular Prandtl number 
turbulent Prandtl number 
dependent variable. 

ambient condition 
exit condition 
value at the inflow boundary 
nozzle discharge condition 
value at the node 
turbulent 
total condition 
inflow boundary under total 
conditions. 

outlines the mathematical model and describes the 
solution procedure. Section 3 describes and discusses 
the solutions obtained for the various applications, 
and in Section 4 the concluding remarks are made 
together with some recommendations for future work. 

2. MATHEMATICAL MODEL 

2.1. Conservation equations 
In general, the flows considered here are assumed 

tO be compressible, steady and turbulent. Turbulence 
is represented by the statistical approach, whereby the 
conservation equations are achieved as the statistical 
average of the decomposition of dependent variables 
into a mean part and a turbulent fluctuating part. 
Neglecting body forces, the resulting statistically- 
averaged conservation equations of mass, momentum 
and energy can be expressed in coordinate-free form 
as follows: 

continuity 

V" (pU) = O; (1) 

momentum 

v .  ( p u ® u )  = - vp + v -  (T ~ + T') ;  (2) 

energy 

V. (pUh) = - V- (Q~ + Qt) + U. Vp 

+ (T = + T ~): VU (3) 

where all symbols are defined in the Nomenclature. 
The density of the fluid is determined from an equa- 

tion of state, which for the present applications is 
taken in perfect-gas form as 

p ffi L ~  ph. (4) 

The molecular stress tensor and the molecular flux 
vectors are computed from the following relation- 
ships: 

~ '  -- 2 ~ D -  2,~V-Up (5) 

Q ,  _- _ __v vh (6) 
~h 

where the deformation tensor D is given by 

D = ½[VU+(VU)'] (7) 

where the superscript t denotes that the transpose of 
the dyadic VU is taken. In turbulent flows of 
sufficiently high Reynolds number, the molecular 
terms are negligible compared with their turbulent 
counterparts except in the close vicinity of wails. 
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2.2. Turbulence modelling 
The averaging approach employed here adopts a 

density weighting of the velocity and other dependent 
variables except pressure and density, so that these 
variables are decomposed into the sum of a density- 
weighted mean plus a corresponding fluctuation [13]. 
In direct analogy to laminar flows, the turbulent stress 
tensor and turbulent flux vectors are computed from 
the following closure models : 

T t = 2ptD-  2311atV'U+pk]t (8) 

O ' =  _ /zt Vh. (9) 
O'h. t 

Thus, turbulent transport is modelled by using the 
Boussinesq stress-strain relation, which relates the 
Reynolds stresses to the mean strain field by the use 
of an isotropic eddy viscosity. 

For the calculations presented in this study, the 
turbulent viscosity #t is determined from the high- 
Reynolds-number form of the two-equation k-8 tur- 
bulence model (see, for example, Rodi [14]). 

The turbulent kinetic energy and its dissipation rate 
are obtained by solving the following modelled trans- 
port equations : 

V. (pUk) = V. (rk Vk) + P, - p~ (10) 

£ 
v.  (pU~) = V. (r,W) + ~ (C,,Pk- pC2,0 (11) 

especially when the shock waves are strong enough to 
cause separation. 

2.3. Euler limit equations 
In the present work, inviscid calculations are also 

made by using the so-called Euler form of the full- 
field equations. These equations are obtained by 
applying the Euler limit operators 0~ --' 0; #, --' 0) to 
the conservation equations and dispensing with the 
turbulence-model transport equations. 

2.4. Dimensionless flow variables 
So as to allow a direct computation of dimen- 

sionless flow variables, the foregoing equations are 
normalized [19] by introducing the following ref- 
erence values : 

length : L;  density : P0.~ ; 

velocity : ao.i. pressure: P0,i" ~-~, 

enthalpy : 7 - 1  ho.i ; turbulence energy : a°2~; 
7 

a03,i dissipation rate : 
7 ~/7L' 

a°'iL (14) turbulent kinematic viscosity : x/7 

where the stress-production rate of  k, Pk, is defined 
by 

Pk = T~ : VU (12) 

and Fk and F, are exchange coefficients for k and e, 
respectively 

Fk = U+/.tt/Ok ; F, =/~+/.tt/o,. (13) 

The turbulence-model coefficients Ok, o~, C ~, and C,, 
are assigned the constant values of  1.0, 1.314, 1.44 
and 1.92 respectively, as recommended by Launder and 
Spalding [l 5]. Although molecular transport has been 
allowed for in the diffusive transport terms, the form 
of the Ice model used here is essentially the high- 
Reynolds-number version. However, the model may 
be extended to include low-Reynolds-number effects, 
as done for example by Jones and Launder [16] and 
Lain and Bremhorst [17]. 

No attempt has been made in the present study to 
include compressibility terms in the k-8 model because 
there appears to be no modelling approximations that 
could be claimed to be ready for widespread appli- 
cation. In fact, the experiences of  other groups (see, 
for example, Vandromme and HaMinh [18]) with 
modelling the compressibility terms indicate that in 
most applications they have little influence on the 
quality of  the predictions. However, this particular 
aspect may warrant further investigation when strong 
shock waves are present in the flow field, and 

2.5. The finite-volume equations 
The solution domain is sub-divided into a number 

of control volumes, each associated with a grid point, 
while the velocities are stored at staggered locations 
which lie between the pressure nodes. The control 
volumes for the velocities are staggered in relation to 
the control volumes for scalar variables. The finite- 
volume equations for each variable are derived by a 
control volume approach with the aid of assumptions 
about the distribution of the variables between nodes 
centred in each control volume. For the convection 
terms, all fluid properties are assumed uniform over 
cell faces; and, except in respect of the velocities for 
which the face-centre values are stored, the values 
prevailing at the cell face are determined by using 
upwind interpolation. 

For any dependent variable, the partial differential 
equation is represented by a coupled set of algebraic 
equations of  the form 

ApOv -- ~ A t ~ +  S® (15) 
i 

where the A{s are the coefficients expressing the influ- 
ence of convection, S® is the integral source term and 
the summation sign ~ stands for summation over 
the neighbouring nodes. A complete statement of the 
finite-volume equations is given by Rosten and Spald- 
ing [20], although the present work modifies their 
original momentum-convection formulation in order 
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to ensure momentum conservation through a shock 
wave [19]. 

2.6. Solution procedure 
The solution algorithm is based upon the iterative 

'guess-and-correct' procedure of  Patankar and Spald- 
ing [21], but is modified in accordance with the SIM- 
PLEST algorithm [22]. First, the equation of  state is 
solved and then a modified version of  Stone's strongly 
implicit method [23] is used to solve the enthalpy 
equation. Next, the velocities are obtained by solving 
the momentum equations using the old iterate pres- 
sures. The solution for the velocity variables proceeds 
by way of  the SIMPLEST procedure. Then, con- 
tinuity is enforced by solving a pressure-correction 
(p') equation [24], which determines the required 
adjustments to the velocities and pressures. A com- 
pressible form of the p'-equation is employed. The 
equation is developed by utilizing: the equation of  
state, source terms from the finite-volume continuity 
equation, and coefficients from truncated forms of the 
momentum equations. The p'-equation is solved in a 
'whole-field' manner by using a simultaneous pro- 
cedure, which is also similar to Stone's method. The 
whole process is then repeated until the solution con- 
verges. More detailed descriptions of  the solution 
algorithm and its features can be found in refs. [12, 
21, 22, 24]. 

2.7. Boundary conditions 
In the present work, the flow can be bounded by an 

inflow boundary, a downstream outflow boundary, a 
free boundary, a cyclic boundary, a solid wall, and 
a symmetry plane. In general, the inflow conditions 
depend on the flow considered and therefore their 
definition will be deferred until the problem speci- 
fications given in Section 3. The different types of  
boundary conditions are now described. 

At a solid surface, a zero-flux condition is used for 
inviscid calculations. For turbulent viscous flows, the 
wall-function approach outlined by Rodi [14] is 
adopted, which in effect means that the boundary 
conditions are not specified right at the wall but at a 
point outside the viscous sub-layer where the log- 
arithmic law of  the wall prevails and the turbulence 
can usually be assumed to be in local equilibrium. A 
zero-flux condition is applied for the static enthalpy. 
The boundary conditions for k and 8 are also specified 
at the first grid point where the logarithmic law of  the 
wall is applied. 

The wall-function boundary conditions, which are 
used mainly to economize on computer requirements, 
are based on the dynamics of  incompressible forced- 
flow boundary layers, and they are not strictly appro- 
priate for high-speed compressible flows. Refinements 
have been introduced by other workers (see, for exam- 
ple, Viegas and Rubesin [25]) in applying wall-func- 
tions to shock/boundary-layer interactions, but such 
extensions are considered beyond the scope of  the 
present study. 

At free boundaries, a fixed pressure condition is 
employed for subsonic flow regions. For regions of 
unconfined and supersonic flow, the specified con- 
ditions avoid the occurrence of shock reflection and, 
therefore, they allow waves to pass through the 
boundary. The boundary condition is formulated in 
terms of  a prescribed mass effiux, pV, which is defined 
as follows: 

P ( P - P , o ) , .  , l)l/2 
p v =  tM - 06) 

where W is the axial velocity, V the lateral velocity, 
M the Mach number and the subscript oo denotes 
free-stream conditions. The origin of  this expression 
comes from the theory of simple wave flow. For the 
complete derivation of equation (16), the reader is 
referred to Palacio and Malin [26]. In their work, 
this boundary condition proved successful at avoiding 
wave reflection or disturbance at the free-stream 
boundaries. 

On cyclic boundaries, such as those found on the 
free boundaries upstream and downstream of a blade 
row, periodicity conditions are applied so that flow 
properties are identical at corresponding points. 

At symmetry planes, the normal gradients for all 
dependent variables are zero. Consequently, a zero- 
flux condition is applied along this boundary. 

At the outlet boundary, the static pressure is speci- 
fied and held constant at a value equal to the undis- 
turbed static pressure, which is physically correct as 
long as the axial Mach number is subsonic. For super- 
sonic outflow, a refined treatment employing a zero- 
gradient condition for the axial velocities produced 
very little difference in the results. 

3. PRESENTATION AND DISCUSSION OF THE 
RESULTS 

3.1. Preliminary remarks 
The purpose of  this section is to demonstrate the 

ability of  the mathematical model to predict normal 
and oblique shock waves for a number of  benchmark 
test cases, for which analytical solutions or published 
data are available. Five text cases are presented in 
the following order: supersonic flow over a jet vane; 
transonic shocked flow in a nozzle; over- and under- 
expanded free jets with Mach disc formation; and 
supersonic flow in a cascade of  wedges with oblique 
shock reflection and Prandtl-Meyer expansion. 

3.2. Supersonic flow past a je t  vane 
The general problem considered is steady, two- 

dimensional, turbulent, supersonic flow past aero- 
dynamic jet vanes at several incidence angles. First, a 
double-wedge profile at zero incidence is considered 
in order to assess the ability of  the model to predict 
the flow downstream of an oblique shock at several 
incident Mach numbers and deflection angles. Next, 
the inviscid results obtained for a double-wedge vane 
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FIG. 1. Post-shock Mach number as a function o f  incident 
Mach number and deflection angle. 

design at two incidence angles are compared with the 
existing analytical solutions, and then viscous effects 
are included and their influence on the numerical solu- 
tions discussed. 

3.2.1. Oblique shocks on a double-wedge profile. The 
section has a chord of 4 units, and only half of  the 
profile is considered due to flow symmetry. The lateral 
extent of the solution domain is 2.5 chords, the inflow 
boundary is located 0.25 chords upstream of the lead- 
ing edge, and the outflow boundary is located 6.95 
chords downstream of  the trailing edge. Inviscid cal- 
culations are made for deflection angles, - ,  ranging 
from 5 ° to 15 °, and incident Math  numbers ranging 
from 1.5 to 3.5. For  all conditions, the deflection angle 
is less than the critical value for the approach Mach 
number, so that the leading-edge shock is always 
attached. The calculations are performed on a mesh 
with 110 non-uniformly distributed cells in the main 
flow direction and 30 cells in the lateral direction. 

For  the leading-edge oblique shock, Figs. 1 and 2 
show the post-shock Mach number and static pressure 
ratio as a function of  the incident Mach number and 
deflection angle. It can be seen that the numerical 
predictions are in fairly good agreement with the ana- 
lytical solutions for all the conditions considered. 

,o- j 
8 Anatyticot 
7 o Predictions J I~x. ongte or  
6 / min.Mi 
5 DefLection . / ' 
, ° , , . . y /  

I I I I I 
i L5 2 2.5 3 3.5 

Incident Mach numbs, M I 

FIG. 2. Static pressure rat io as a function o f  incident Mach 
n u m b e r  a n d  de f l ec t i on  ang le .  

:F 
-I 

. . N  Prediction 
Anotyticot 

_ 1  J • - -  - 

Incidence • 0 ° 

I I 1 
o i 2 

z / c  

FIG. 3. Normalized static pressure distribution a l o n g  the 
double-wedge surface. 

3.2.2. Effect o f  incidence angle on a vane design. To 
show the effect of  the incidence angle on the cal- 
culation of the pressure distribution along the surface 
of  the profile, a double-wedge vane design with a 
chord, c, of 3 units, a deflection angle, ~, of 12.12 °, 
and a thickness ratio, 6, of 0.2146 is considered. For  
this case, the following fluid properties are employed : 
/~=5 .42×10  -~ N s m -2, 7=1 .23 ,  Mw=25.1 kg 
kg-mol- ~, and ah = 0.6. 

The inlet free-stream flow conditions may be sum- 
marized as follows: M i = 2 . 5 ,  p0 = I00 bar, 
To = 2660 K. These values permit the inlet fluxes of  
mass, momentum and static enthaipy to be deter- 
mined for use in the numerical computations. The 
inlet turbulent kinetic energy is specified by taking the 
turbulent intensity to be 1% oftbe inlet mean velocity. 
The inlet dissipation rate is specified by assuming a 
free-stream eddy viscosity equal to the laminar vis- 
cosity from which the free-stream value of ~ follows 
as 8 = pC~k2/llt, where C~ = 0.09. 

L Inviscid calculations 
Calculations were performed for the double-wedge 

profile at 0 ° and 10 ° incidence angles. Initially, the 
Euler equations were solved in order to compare the 
results with those obtained from inviscid shock- 
expansion theory (see, for example, Shapiro [27]). 

Figure 3 compares the analytical and predicted 
static pressure distributions along the surface of the 
vane at zero incidence. The pressure is normalized 
by the inlet static pressure, and the axial distance is 
normalized with respect to the chord. It can be seen 
from the figure that the predictions are in very good 
agreement with the analytical results. The calculated 
drag coefficient is 6% lower than the analytical value. 
Obviously, the lift and moment coefficients are zero 
for this case. 

The static pressure contours around the double- 
wedge are presented in Fig. 4, and the corresponding 
Mach number contours are shown in Fig. 5. Both 
contour plots reveal the expected flow structure; two 
oblique shocks are generated at the leading edge which 
diminish in strength with distance from the profile. 
Two oblique shock waves emanate from the trailing 
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F•. 4. Pressure contours around the double-wedge profile 
indicating the shock location. 

.6 

2.5 

FIG. 5. Mach number contours around the double-wedge 
profile. 

edge of such strength that the flow is restored to the 
static ambient pressure, as may be noted from Fig. 3. 
In Figs. 4 and 5, a small discontinuity in the pressure 
and Mach number contours may be discerned near 
the middle of  the vane. This feature may be a conse- 
quence of the rapidly varying cell sizes in this region, 
as Palacio and Malin [26] predicted smooth contours 
when employing a uniformly-distributed mesh. 

For an incidence angle of 10% the analytical and 
predicted static pressure distributions along the upper 
and lower surfaces of the vane are shown in Fig. 6. 
The values are normalized as in the previous case. In 
general it can be seen that the agreement between the 
numerical and analytical results is very good. The 
major discrepancy with the theory concerns the strong 
shock forming on the lower surface, where the model 
overpredicts the static pressure ratio. The weak shock 

4 

3 

I 

0 
- I  0 

- Ana ty t i ca l ,  

~ Pred ic t ion  

Lowe~ sur foce  

I 2 3 
Z/¢ 

Fie. 6. Normalized static pressure distribution along the 
surface at 10 ° incidence. 

on the upper surface is very well represented, as are the 
expansions and trailing-edge shocks on both surfaces. 

The calculated drag, lift and moment coefficients 
are within 10% of the corresponding analytical values. 
Table 1 provides a summary of the analytical and 
computed coefficients for both cases. A negative sign 
for the moment coefficient indicates a clockwise 
torque acting on the vane. 

The static pressure and Mach number contours are 
presented in Figs. 7 and 8, respectively. The first of  
these figures clearly shows the maximum pressure on 
the front lower surface, while the front upper surface 
is at a pressure only slightly higher than the inlet 
value ; this is due to the small deflection angle of  2 °, 
which gives a very weak shock. From Fig. 8 it can be 
seen that the maximum Mach number occurs on the 
rear part of  the upper surface, where the largest expan- 
sion takes place. 

II. Viscous calculations 
The effect of  viscosity on the calculations was also 

investigated. The general results of  these simulations 
may be summarized as follows. The total drag 
coefficient increased due to viscous effects, with the 
model predicting a skin-friction drag coefficient of  
about 0.0065 for both cases, which is very close to the 
typical value of 0.005 quoted by Shapiro [27]. For the 
second case, the lift coefficient due to friction was 
negative as may be expected from the orientation of 
the friction surfaces. However, the total value of the 
lift remained practically unchanged, which is due to 
the very small effect of  viscous dissipation on these 
profiles performing in supersonic flow. 

The velocity profiles differed basically in the region 
surrounding the trailing edge, where a very small recir- 
culation zone appeared. The pressure and Mach num- 
ber contours showed no significant difference when 
compared to the inviscid results presented earlier in 
Figs. 7 and 8. In this flow, the boundary layer tends 
to remain very thin, and is perhaps not resolved 
adequately in the present calculations. For example, 
the surface Mach number is typically 2.5 upstream of 
the trailing edge, which corresponds to a dimen- 
sionless wall coordinate y+ of approximately 1000 at 
the near-wall grid point. 

If  the boundary-layer is resolved sufficiently, it may 
be necessary to switch to a low-Reynolds-number 
treatment as the wall-function approach cannot really 
account for very large mechanical dissipation in a 
very satisfactory way (see, for example, Villasenor 
and Radosavljevic [28]). However, the influence of 
viscosity is known to be negligible in the present case, 
and so refinements in this area are probably not 
worthwhile. 

3.3. Transonic f low in a nozzle 
The problem considered is one-dimensional tran- 

sonic flow through the de Laval nozzle of Malin [29]. 
The nozzle was designed to produce a linear variation 
of Mach number with axial distance under isentropic 
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Table I. Aerodynamic coefficients 

1199 

0 ° incidence I0 ° incidence 

Inviscid Viscous Inviscid Viscous 

Prediction Analytical Prediction Prediction Analytical Prediction 

CD.,, 7.62 x I0 -2 8.1X 10 -2 7.71 x 10- '  0.154 0.145 0.155 
CD, fr 0 0 8.16X 10 .3 0 0 6X 10 .3 
Co.toL 7.62 X 10 -2 8.1X 10 .2 8.53 X 10 .3 0.154 0.145 0.161 
CL.sh 0 0 0 0.350 0.323 0.352 
CLr, 0 0 0 0 0 - 9 x  I0 -4 
CLt~ 0 0 0 0.350 0.323 0.351 
Cu.,h 0 0 0 --9.3 x 10 -2 --8.3 x 10-: --9.5 x 10 -2 
Cu.n 0 0 0 0 0 1.6x 10 -4  
CM.Lot 0 0 0 --9.3x 10 -2 --8.3x 10 -2 --9.5x 10 -~ 

CD, drag coefficient ; CL, lift coefficient; C,, moment coefficient; sh, shock ; fr, friction ; tot, total. 

conditions. For the design case, the flow is asymmetric 
about the throat with subsonic axial inflow and super- 
sonic outflow. The nozzle has a chord of 3 units and 
a throat area of 0.25 square units. The inlet Mach 
number is 0.5 and the design outlet Mach number is 
2.0. 

Inviscid calculations are made for four different 
back pressures, three of which produce shocked flow 

x I0 6 Pa f u.-,  

0.5 

0.6 .6 

FIG. 7. Pressure contours around the vane. 

and one of which produces transonic shock-free flow. 
The results of these calculations are shown in Fig. 9 in 
terms of the computed distributions of Mach number 
along the nozzle. The figure shows that in all cases the 
predictions are in excellent agreement with the theory. 
The shock position and strength, and exit Mach num- 
ber (and hence the stagnation-pressure loss) are pre- 
dicted almost exactly. From the figure it can also be 
seen that the shock discontinuity is smeared out to be 
represented by a monotonic transition over several 
mesh intervals. The solutions for shocked flow 
required about 400 uniformly-distributed cells to give 
substantially grid-independent results. Of course, a 
more economical solution could have been obtained 
by employing local grid refinement in the vicinity of 
the shock wave only. The computed normalized mass 
flow rate through the nozzle is 0.1714, which agrees 
very well with the analytical value of 0.1712. 

3.4. Overexpanded free jets 
The problem considered is an axisymmetric super- 

sonic jet discharging into stagnant surroundings from 
a nozzle at a pressure less than the ambient pressure. 
For a discharge Mach number of 2, inviscid cal- 
culations are made for static pressure ratios between 
0.4 and 0.6, this being the range in which Mach discs 

~ . 5  

"2 .5  

FIo. 8. Mach number contours around the vane. 

, + Anotyticot ..+~'+'" 
1.5 - - ~ - -  Preclictions ,.~,'~ 

I . ~"°÷ ' '~  °e ' "  t 

=E ( . , °  \ . ,  

0.! ~,~ k ~  

Shock rotations at: 
x/c • 0.6, 0.7, 0.8 

t t 1 
0.2 0.4 0.6 0.8 ,r/c 

F=o. 9. Mach number distributions in a nozzle for four 
different back pressures. 
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FIG. 10. Diameter and location of the Mach discs as a 
function of static pressure ratio. 

are found. The radial extent of  the domain is taken to 
be 1 diameter, and the axial extent is taken to be 2.5 
diameters. The calculations are performed on a 
mesh orS0 radial cells (with 50 cells within the nozzle) 
by 100 axial cells, of  which 60 cells are located with- 
in one nozzle-diameter downstream. This mesh results 
in substantially grid-independent results. 

The computed location and diameter of  the Mach 
discs are compared with the experimental data of Love 
etal. [30] in Fig. 10. The computed results correspond 
to the axial location and radial extent of  the sonic line. 
It can be seen that the predictions show the correct 
trends, with the Mach disc moving away from the 
nozzle exit and decreasing in size as the pressure ratio 
increases. The predictions are in very good agreement 
with the data except for the higher pressure ratios, 
where the largest discrepancies are observed. These 
discrepancies may be due to the absence of  viscosity 
from the predictions. Viscous effects are likely to be 
important across the slip line from the triple point 
where high mean shear is present. However, it is likely 
that there are further discrepancies due to the fact 
that the experimental values have been deduced from 
shadowgraphs, which correspond to density contours 
and not to sonic-line values. 

Finally, Fig. 11 shows the computed Mach number 
contours for the pressure ratios 0.42 and 0.55. The 

figure clearly shows the collapse of  the jet boundary 
and the production of  the oblique shock wave at the 
nozzle lip. This shock wave runs down towards the 
axis to form a Mach disc. It then reflects from the 
triple point and runs off to meet the jet boundary, 
where it is reflected as an expansion wave. 

3.5. Underexpanded free jets 
The problem considered is an axisymmetric sonic 

jet discharging into stagnant surroundings from a 
nozzle at a pressure higher than the ambient pressure. 
Inviscid calculations are made for three different static 
pressure ratios, namely 1.88, 2.32 and 3.56. All three 
pressure ratios fall within the range of values covered 
by the experiments of  Gibbings etal. [31]. The case 
with the highest pressure ratio corresponds to the 
highly-underexpanded jet studied experimentally by 
Donaldson and Snedeker [32], and for this case an 
additional calculation is made with the k-e model 
specifying a discharge intensity of  1%. The radial 
extent of  the solution domain is 1 diameter and the 
downstream boundary is located 4.5 diameters from 
the nozzle. The calculations employ a mesh of  30 
radial cells, with 20 cells within the nozzle, and 100 
axial cells, of which 80 cells are located within the first 
three nozzle diameters. 

For the jet with a pressure ratio of  3.56, Fig. 12 
presents the computed Mach number distribution 
along the jet axis, whilst the predicted Mach number 
contours are shown in Fig. 13. The first of  these figures 
includes the Mach disc locations determined exper- 
imentally by Donaldson and Snedeker [32] and the 
predictions obtained with the inviscid and the k-~ 
model calculations. The figures show a rapid initial 
expansion of  the nozzle fluid, as was observed in the 
experiments. For the viscous calculation, the Mach 
number on the centre-line is 3.4 just upstream of the 
first Mach disc and 0.56just downstream of the shock. 
These values are in reasonable agreement with 
the respective values of  3.5 and 0.5 reported by 
Donaldson and Snedeker. The strength of  the shock 
accords closely with that given by inviscid normal 
shock theory. 
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FIG. 11. Math number contours for two different static pressure ratios in overexpanded jets. 
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FIG. 12. Mach number distribution along the flow axis for a static pressure ratio of 3.56. 
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Mach number contour distribution for an undercxpandcd jet with a static pressure ratio of 3.56. 

In agreement with experiment, the model predicts 
the presence of  two Mach discs. However, it can be 
seen that both discs lie somewhat downstream of the 
experimental locations. The solution mesh is rather 
coarse in the vicinity of  the second disc and, in 
addition, the exit plane is rather close. The over- 
prediction of  the first shock position may be due partly 
to insufficient grid cells in the vicinity of  the disc. 
Figure 12 shows that the region behind the disc is 
sensitive to the turbulent mixing processes occurring 
along the slip line which trails from the triple point. 
These processes transport higher momentum fluid 
into the region behind the disc, thereby altering the 
pressure levels from those occurring in the inviscid 
calculation. 

The Mach number contours depicted in Fig. 13 
show that the computed structure of  the jet is in good 
accord with that observed in experiments. As the fluid 
leaves the nozzle, the pressure mismatch generates a 
rapid expansion and a down-running oblique shock 
wave. This shock interacts with the expansion waves 
returning from the flow axis to form a Mach disc. The 
shock then reflects from the triple point and moves 
off towards the jet boundary, where it is reflected as 
an expansion wave. Subsequently, the flow is again 

accelerated and the jet becomes fully supersonic at the 
start of  the second shock 'cell'. 

Figure 14 shows the computed and measured inter- 
sections of  the jet shock with the flow axis as a function 
of  the operating pressure ratio. According to the 
experiments of  Gibbings et al. [31], oblique shock 
reflection should occur for a static pressure ratio less 
than 1.83, and Mach disc intersection for a ratio 
greater than this value. The predictions indicate that 
regular reflection occurs at a ratio of  1.88, and as 
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FIG. 14. Intersections of the jet shock with the flow axis as 
a function of pressure ratio. 
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FIG. 15. Mach number contour distribution in a cascade of wedges. 

may be seen from the figure, the intersection occurs 
somewhat downstream of the measured location. For 
a static pressure ratio of  2.32, it can be seen that 
the predicted disc location agrees very well with the 
measurement. 

3.6. Supersonic flow in a cascade o f  wedges 
The problem considered is two-dimensional super- 

sonic flow through a cascade of  wedges. The wedge 
cascade has a chord of  4 units, a solidity ratio of  0.25, 
and a leading-edge angle of  18.5 °. The flow enters 
the cascade axially with a Mach number of  3, and 
throughout the cascade the flow is completely super- 
sonic. Periodicity conditions are applied outside of  
the cascade. Inviscid calculations are performed on a 
mesh of 45 lateral cells by 168 axial cells, of  which i 50 
cells are located in the blade row. This mesh size 
was found to produce solutions which for practical 
purposes could be considered to be grid independent. 

The computed Mach number contours are shown 
in Fig. 15. It can be seen that the flow structure com- 
prises a leading-edge oblique shock which reflects 
from the upper surface to be cancelled at the upstream 
corner giving uniform flow between the parallel sur- 
faces and an expansion off the downstream corner. 
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FIG. 16. Normalized static pressure distributions along each 
surface of the wedge. 

At the trailing edge of  the cascade, two compression 
waves are formed. The reflection of the leading-edge 
shock is not cancelled exactly due to numerical smear- 
ing. Consequently, a weak expansion wave emanates 
from the upstream corner. 

Figure 16 compares the computed surface pressure 
distribution with those calculated from shock and 
expansion theory. The values are normalized with 
respect to the inlet total pressure and the chord respec- 
tively. For both surfaces, it can be seen that the pre- 
dictions are in good overall agreement with the ana- 
lytical solutions. In particular, the strengths of the 
oblique shock waves are predicted almost exactly. The 
computed static-pressure distribution on the inner 
surface clearly shows the weak expansion at the 
upstream corner, which, as was mentioned earlier, is 
a consequence of incomplete wave cancellation. 

4. CONCLUSIONS 
A numerical model was developed to simulate the 

characteristics of  transonic and supersonic flow fields. 
A series of  test cases including both bounded and 
unconfined flow was considered for its validation. 
Solutions were obtained of  the steady-state Euler 
equations and then compared with available ana- 
lytical results, whilst the effect of viscosity was 
accounted for through the solution of  the full Navier- 
Stokes equations for comparison with existing exper- 
imental data. Good agreement was found for all the 
cases considered in the present study. The modi- 
fications incorporated into the model to ensure 
momentum and energy conservation through the 
shock waves proved to be particularly important in 
confined flows, where they lead to an accurate pre- 
diction of  the shock position and strength. 
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CALCUL NUMERIQUE DES CHAMPS D'ECOULEMENTS PERMANENTS 
TRANSONIQUES ET SUPERSONIQUES 

R6sum6---Une proc6dure de calcul des ondes de choc ou de d6tente est pr6sent6e pour les 6coulements 
transoniques ou supersoniques. De faqon ~i connaltre ia validit6 du mod61e, les calculs sont fails pour des 
cas dont les solutions analytiques ou les donn6es sont publi6es. Les cas consid6r6s sont: jet supersonique, 
6coulement supersonique dans une cascade d'aubes avec r6flexion d'onde de choc et onde de d6tente de 
PrandtI-Mayer. Le mod61e qui inclut la solution permanente des 6quations d'Euler aussi bien que les 
6quations compl6tes de Navier-Stokes, utilise une formulation de volume fini modifi6e pour assurer la 
conservation de la quantit6 de mouvement et de r6nergie ~. travers ronde de choc. Dans tous les cas, les 

calculs s'accordent bien avec les r6sultats analytiques et exp6rimentaux. 

NUMERISCHE BERECHNUNG STATION.~RER SCHALLNAHER UND 
OBERSCHALLSTROMUNGSFELDER 

Zusammenfassung--Es wird ein Verfahren zur Berechnung der Stofl- und Expansionswellen bei Str6mungen 
ira Bereich der Schallgeschwindigkeit und des Oberschalls vorgestellt. Um die Zuverl&ssigkeit des Modells 
abzusch~tzen, wird eine Reihe von Sonderf~llen durchgerechnet, ffir die analytische L6sungen oder 
Versuchsdaten vorliegen. Folgende Fille werden betrachtet: Oberschallstr6mung an Strahlrudern, schall- 
nahe Str6mungen mit VerdichtungsstoB in einer Dfise, fiber- und unterexpandierte Freistrahlstr6mungen 
mit der Ausbildung einer "Mach-Scheibe" und schliel3lich eine Oberschallstr6mung mit einer Abfolge yon 
StoBreflexionen und PrandtI-Meyer-Expansionen. Das Modell berficksichtigt die L6sung der station~ren 
Euler-Gleichungen wie auch der vollst~ndigen Navier-Stokes-Gleichungen. Ein bestehendes Finite-Volu- 
mina-Verfahren wird modifiziert, um die Erhaltung yon Impuls und Energie fiber den Verdichtungsstol3 
zu gew.~hrleisten. In allen F~llen zeigen die Berechnungen eine gute Obereinstimmung mit analytischen 

und experimentellen Ergebnissen. 
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